Cluster-Specific Predictions with
Multi-Task Gaussian Processes

Context

Suppose you observe irregular longitudinal data coming from multiple sources,
collected at different locations (e.g. on the figure below, the performance on
100m freestyle events for 3 different swimmers have been observed at different
ages). Multi-task (or multi-output) Gaussian processes (GPs) approaches have
been successfully applied despite scaling and flexibility limitations [1,2,3].

801

(2] ~ ~
w o w
s L L

Performance (in sec)

o
o
L

551

10 11 12 13 14 15 16 17 18 19 20
Age

We recently proposed a novel paradigm for defining multi-task GPs by
[4]. This
framework has first been extended to perform a
of the tasks in a non-parametric and probabilistic design [5].

Sharing information through mean processes

If longitudinal data are collected from M correlated tasks, let us assume that all
the observations ;(¢),2 =1,..., M can be allocated into K clusters and
decomposed as the sum of a cluster-specific mean process [, a task-specific
process fz and a noise term. Formally, if the i-th task belongs to the k-th cluster:

yi(t) = p(t) + fi(t) + €i(?),
with
Hi ™~ gP(mka Ck)? fz ~ gP(Oa Z’L)a g ™ gP(()?O-zQ]) ZZ ~ M<177T)

where we do not impose any assumption on the covariance structures.
Conditionally to the mean processes, all tasks are independent. Thanks to a
, we can still learn kernel hyper-parameters through
gradient-descent optimisation (M step) and compute variational hyper-posterior
approximations of the latent mean process in closed form (VE step). The
learning procedure in the number of tasks/clusters. After
learning, the key idea for prediction is to integrate out a mean process and
define a distribution for any new task y, and all clusters, as:

p(y, | {yibimtnt) = / P(¥2s 10 | {7 bimr....ar)dpig

— /p(y* | o) (1o | 1Y i=t,.... 0 )d g

= N(y,; m, K+ 3%, +02I).

Arthur Leroy

MANCHESTER

Plerre LatOUChe The University of Manchester
Benjamin Gued; L,
[& Universite

Paris Cité

Servane Gey

The R package
all tools to perform learning, prediction and visualisation within this framework.
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In the figure above, we display a comparison between (top), the

approach proposed in [4] called (middle), and our extension named
(bottom), to perform prediction on (red) testing points using (black)

training points and information from other tasks (backward points). The training

individuals are coloured according to the most probable cluster (bottom panel).

The ability to recover the underlying cluster of similar patterns from a handful of
data points of a specific task improves dramatically the
and , by favouring the relevant information.

In the following figure, we also highlight the remarkable performances in terms of
, outperforming state-of-the-art curve clustering methods
when computing the Adjusted Rand Index (ARI) for various simulation schemes.

(https://arthurleroy.qgithub.io/MagmaClustR) offers
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Application to diverse problems

In the article, the MagmacCilust algorithm has been successfully applied to a
forecasting problem of for young swimmers, missing data

time series, and during
childhood (see figure below). Any problems involving correlated longitudinal,
spatial or any continuous measurements is generally susceptible to be well
handled by this approach, and the current implementation is designed to make this
process as easy as possible with a few lines of code.
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